Подключение светодиода к 220В

Светодиоды в качестве источников света получили широкое распространение. Но они рассчитаны на низкое напряжение питания, а зачастую возникает необходимость включить светодиод в бытовую сеть 220 вольт. При небольших познаниях в электротехнике и умении выполнять несложные расчеты это возможно.

Способы подключения

Стандартные условия работы большинства светодиодов – напряжение 1,5-3,5 В и ток 10-30 мА. При пряом включении прибора в бытовую электросеть время его жизни составит десятые доли секунды. Все проблемы подключения светодиодов в сеть повышенного, по сравнению со штатным рабочим, напряжения, сводятся к тому, чтобы погасить излишек напряжения и ограничить ток, протекающий через светоизлучающий элемент. С этой задачей справляются драйверы – электронные схемы, но они достаточно сложны и состоят из большого числа компонентов. Их применение имеет смысл при питании светодиодной матрицы со множеством светодиодов. Для подключения одного элемента есть более простые пути.

Подключение с помощью резистора

Самый очевидный способ – подключить последовательно со светодиодом резистор. На нем упадет лишнее напряжение, и он ограничит ток.

Подключение светодиода к 220В
Схема включения светодиода с балластным резистором.

Расчет этого резистора ведется в такой последовательности:

  1. Пусть имеется светодиод с номинальным током 20 мА и падением напряжения 3 В (фактические параметры надо посмотреть в справочнике). За рабочий ток лучше принять 80% от номинала – LED в облегченных условиях проживет дольше. Iраб=0,8 Iном=16 мА.
  2. На добавочном сопротивлении упадет напряжение питающей сети за вычетом падения напряжения на светодиоде. Uраб=310-3=307 В. Очевидно, что практически все напряжение будет на резисторе.

Важно! При расчетах надо применять не действующее значение напряжения сети (220 В), а амплитудное (пиковое) – 310 В.

  1. Значение добавочного сопротивления находится по закону Ома: R=Uраб/ Iраб. Так как ток выбран в миллиамперах, то сопротивление будет в килоомах: R=307/16= 19,1875. Ближайшее значение из стандартного ряда – 20 кОм.
  2. Чтобы найти мощность резистора по формуле P=UI, надо рабочий ток умножить на падение напряжения на гасящем сопротивлении. При номинале в 20 кОм средний ток будет составлять 220 В/20 кОм=11 мА (здесь можно учитывать действующее напряжение!), и мощность составит 220В*11мА=2420 мВт или 2,42 Вт. Из стандартного ряда можно выбрать резистор мощностью 3 Вт.

Важно! Этот расчет упрощенный, в нем не везде учтено падение напряжения на светодиоде и его сопротивление в открытом состоянии, но для практических целей точность достаточная.


Резистор 3 Вт.
Резистор мощностью 3 Вт.

Так можно подключать цепочку из последовательно соединенных светодиодов. При расчетах надо умножить падение напряжения на одном элементе на их общее количество.

Последовательное подключение диода с высоким обратным напряжением (400 В и более)

У описанного способа есть существенный недостаток. Светодиод, как любой прибор на основе p-n перехода, пропускает ток (и светится) при прямой полуволне переменного тока. При обратной полуволне он заперт. Его сопротивление велико, намного выше балластного сопротивления. И сетевое напряжение амплитудой 310 В, приложенное к цепочке, упадет большей частью на светодиоде. А он не рассчитан на работу в качестве высоковольтного выпрямителя, и может довольно скоро выйти из строя. Для борьбы с этим явлением часто рекомендуют последовательно включать дополнительный диод, выдерживающий обратное напряжение.

Подключение светодиода к 220В
Схема включения с дополнительным диодом.

На самом деле при таком включении приложенное обратное напряжение разделится примерно пополам между диодами, и LED будет чуть легче при падении на нем около 150 В или немного меньше, но судьба его будет все равно печальной.

Шунтирование светодиода обычным диодом

Намного более эффективна такая схема включения:

Подключение светодиода к 220В
Схема с дополнительным диодом.

Здесь светоизлучающий элемент включен встречно и параллельно дополнительному диоду. При отрицательной полуволне дополнительный диод откроется, и все напряжение окажется приложенным к резистору. Если расчет, проведенный ранее, был верным, то сопротивление не будет перегреваться.

Встречно-параллельное подключение двух светодиодов

При изучении предыдущей схемы не может не прийти мысль – зачем использовать бесполезный диод, когда его можно заменить таким же светоизлучателем? Это верное рассуждение. И логически схема перерождается в следующий вариант:

Подключение светодиода к 220В
Схема с дополнительным светодиодом.

Здесь в качестве защитного элемента использован такой же светодиод. Он защищает первый элемент при обратной полуволне и при этом излучает. При прямой полуволне синусоиды светодиоды меняются ролями. Плюсом схемы является полное использование возможностей источника питания. Вместо одиночных элементов можно включать цепочки светодиодов в прямом и обратном направлениях. Для расчета можно использовать тот же принцип, но падение напряжения на светодиодах умножается на их количество, установленное в одном направлении.

С помощью конденсатора

Вместо резистора можно применить конденсатор. В цепи переменного тока он ведет себя в определенной мере как резистор. Его сопротивление зависит от частоты, но в бытовой сети этот параметр неизменен. Для расчета можно взять формулу Х=1/(2*3,14*f*C), где:

  • X – реактивное сопротивление конденсатора;
  • f – частота в герцах, в рассматриваемом случае равна 50;
  • С – емкость конденсатора в фарадах, для пересчета в мкФ использовать коэффициент 10-6.

На практике используют формулу:

С=4,45*Iраб/(U-Uд), где:

  • С – необходимая емкость в мкФ;
  • Iраб — рабочий ток светодиода;
  • U-Uд — разница между напряжением питания и падением напряжения на светоизлучающем элементе – имеет практическое значение при применении цепочки светодиодов. При использовании одного светодиода можно с достаточной точностью принять значение U равным 310 В.

Применять конденсаторы можно с рабочим напряжением не менее 400 В. Расчетные значения для токов, характерных для подобных схем, приведены в таблице:

Рабочий ток, мА10152025
Емкость балластного конденсатора, мкФ0,1440,2150,2870,359

Получившиеся значения достаточно далеки от стандартного ряда емкостей. Так, для тока 20 мА отклонение от номинала 0,25 мкФ составит 13%, а от 0,33 мкФ – 14%. Резистор можно подобрать гораздо точнее. Это является первым недостатком схемы. Второй уже упоминался – конденсаторы на 400 и выше В имеют довольно крупные размеры. И это еще не все. При использовании балластной емкости схема обрастает дополнительными элементами:

Подключение светодиода к 220В
Схема включения с балластным конденсатором.

Сопротивление R1 устанавливается в целях безопасности. Если схему запитать от 220 В, а потом отключить от сети, то конденсатор не разрядится – без этого резистора цепь разрядного тока будет отсутствовать. При случайном касании выводов емкости легко получить поражение электрическим током. Сопротивление этого резистора можно выбрать в несколько сотен килоом, в рабочем состоянии он зашунтирован емкостью и на работу схемы не влияет.

Резистор R2 нужен для ограничения броска зарядного тока конденсатора. Пока емкость не заряжена, она не будет служить ограничителем тока, и за это время светодиод может успеть выйти из строя. Здесь надо выбрать номинал в несколько десятков Ом, на работу схемы он также не будет иметь влияния, хотя его можно учесть при расчете.

Пример включения светодиода в выключатель света

Один из распространенных примеров практического использования светодиода в цепи 220 В – индикация выключенного состояния бытового выключателя и облегчения поиска его местоположения в темноте. Светодиод здесь работает при токе около 1 мА – свечение будет неярким, но заметным в темноте.

схема подключения светодиода через выключатель 220В
Схема индикации состояния выключателя.

Здесь лампа служит дополнительным ограничителем тока при разомкнутом положении выключателя, и возьмет на себя небольшую долю обратного напряжения. Но основная часть обратного напряжения приложена к резистору, поэтому светодиод здесь относительно защищен.

Видео: ПОЧЕМУ НЕ НАДО СТАВИТЬ ВЫКЛЮЧАТЕЛЬ С ПОДСВЕТКОЙ


Техника безопасности

Технику безопасности при работе в действующих установках регламентируют Правила охраны труда при эксплуатации электроустановок. На домашнюю мастерскую они не распространяются, но их основные принципы при подключении светодиода к сети 220 В надо учесть. Главное правило безопасности при работе с любой электроустановкой – все работы надо выполнять при снятом напряжении, исключив ошибочное или непроизвольное, несанкционированное включение. После отключения выключателя отсутствие напряжения надо проверить тестером. Все остальное – применение диэлектрических перчаток, ковриков, наложение временных заземлений и т.п. трудновыполнимо в домашних условиях, но надо помнить, что мер безопасности мало не бывает.

Фото аватара
Панков Алексей

Инженер-электрик. Специалист по проектированию и эксплуатации электротехнических изделий.

Оцените автора
( 1 оценка, среднее 5 из 5 )
Светилов
Добавить комментарий