Обзор схем для изготовления стабилизатора тока

Яркость свечения светодиода зависит от протекающего через него тока. Для получения стабильной яркости надо, чтобы ток через LED не менялся со временем, а для повышения долговечности полупроводникового прибора ток в любой ситуации не должен превышать номинального значения. По этим резонам для питания светодиодов применяют стабилизаторы тока, которые можно изготовить своими руками.

Как работает стабилизация по току

Получение стабильного (не зависящего от изменений нагрузки в заданных пределах) тока основано на законе Ома. Если ток в цепи упал, драйвер увеличивает выходное напряжение до восстановления уровня тока до заданного значения. Если ток увеличился, регулятор, наоборот, снижает напряжение. Для отслеживания уровня тока часто применяется обратная связь (например, замер падения напряжения на образцовом резисторе (шунте)).

Другой способ получить стабильный ток – запитать нагрузку от стабилизатора напряжения. Если сопротивление нагрузки останется неизменным, то и ток через нее не изменится.

Второй способ проще в реализации, но его эффективность ниже. Сопротивление цепочки светодиодов в процессе эксплуатации может меняться (например, в зависимости от температуры), при этом и яркость тоже не останется неизменной. Хотя это все равно лучше, чем отсутствие драйвера совсем.

Мнение эксперта
Панков Алексей
Инженер-электрик.

Специальность: Проектирование и монтаж изделий электротехники.

Задать вопрос
Другая проблема применения стабилизаторов напряжения для получения неизменной яркости состоит в крутой ВАХ светоизлучающих диодов. Небольшое изменение напряжения дает значительный прирост или снижение тока. Стабильность напряжения должна быть очень высокой.
Обзор схем для изготовления стабилизатора тока
Вольт-амперная характеристика светоизлучающего диода

Обзор популярных схем

Стабильный источник питания для LED (и другой нагрузки) можно собрать по разным схемам. Все зависит от требуемых характеристик и квалификации мастера.

Импульсный стабилизатор для светодиодов

Несложный, но мощный стабилизатор тока можно собрать на недорогой и доступной микросхеме 555 (NE555, КР1006ВИ1). Микросхема представляет собой таймер с двумя входами:

  • по одному входу можно регулировать частоту импульсов;
  • по второму – их длительность.

Таким способом можно организовать широтно-импульсную модуляцию (ШИМ) для регулирования и стабилизации яркости светодиодов. Метод ШИМ состоит в питании LED импульсами постоянного напряжения, постоянной частоты, но разной длительности. Чем больше длительность импульсов, тем выше средний ток через светоизлучающие диоды, а чем короче импульсы – тем ниже средний ток.

Обзор схем для изготовления стабилизатора тока
Принцип ШИМ-регулирования

Схема стабилизатора тока построена так, что частота следования импульсов на выходе остается постоянной, а длительность можно регулировать потенциометром. Если регулировка не нужна, можно вместо потенциометра впаять постоянный резистор нужного номинала. Частота следования импульсов практически не зависит от напряжения питания, а их размах – зависит. И это является недостатком схемы, потому что для стабильного свечения требуется стабильное входное напряжение.

Обзор схем для изготовления стабилизатора тока
Схема драйвера на таймер 555

Устройство питается от постоянного напряжения от 13,5 до 27 вольт (ограничения заданы диапазоном входного напряжения LM7812). Для питания пониженным напряжением надо удалить из схемы входной стабилизатор. Для питания повышенным – изменить схему стабилизации.

Стабилизатор на КРЕН

Популярные линейные интегральные стабилизаторы КРЕН (зарубежные аналоги – LM78XX, где XX – напряжение стабилизации) можно использовать для стабилизации тока в стандартном включении – путем получения стабильного напряжения. Но изменив включение микросхемы можно заставить ее стабилизировать ток.

Обзор схем для изготовления стабилизатора тока
Источник тока на КРЕН

Для стабилизации тока используется свойство микросхемы повышать уровень напряжения на выходе (вывод Out) если повышается уровень на выводе GND. Если ток в цепи по какой-либо причине уменьшается, то изменяется распределение Uвходного между нагрузкой и регулирующим элементом микросхемы. Напряжение на нагрузке увеличивается, и интегральный стабилизатор повышает напряжение на выходе, удерживая при этом ток стабильным.

Микросхему надо выбирать так, чтобы ее Uвых хватило для открывания цепочки светодиодов. Для одного LED хватит и КРЕН5А (LM7805). Для большего количества светодиодов надо применять стабилизатор с большим выходным уровнем, соответственно увеличивая напряжение питания. Резистор R1 задает ток в цепи по закону I=Vстаб/R1+i0, где:

  • I — ток стабилизации, А;
  • Vстаб – выходное напряжение микросхемы;
  • R1 – сопротивление резистора, Ом;
  • i0 – ок покоя микросхемы, для большинства экземпляров около 8 мА.

Максимальный ток ограничивается возможностями микросхемы и не превышает 1 А, но для этого стабилизатор надо установить на радиаторе. Окончательно выходной ток устанавливается подбором резистора R1 в процессе наладки.

Для нормальной работы микросхемы на входе надо установить оксидный конденсатор (на схеме не показан) так, чтобы длина проводников между КРЕН и конденсатором была не больше 7 см.

Точно такой же стабилизатор можно построить на микросхеме LM311. Она включается по аналогичному принципу, и ток стабилизации рассчитывается по той же формуле.

Обзор схем для изготовления стабилизатора тока
Окно онлайн-калькулятора

Для расчета параметров стабилизатора можно использовать онлайн-калькуляторы. Найти их можно в интернете.

Стабилизатор тока на транзисторе

Стабилизатор для светодиодов можно построить на биполярном транзисторе, включенном по схеме эмиттерного повторителя. Напряжение на базе стабилизировано стабилитроном VD, резистор R1 ограничивает ток через стабилитрон.

Обзор схем для изготовления стабилизатора тока
Схема стабилизатора на биполярном транзисторе

Если напряжение на базе транзистора неизменно, то оно неизменно и на эмиттере, а значит, стабилен и ток через R2. Так как ток коллектора практически совпадает с током эмиттера, то и ток через светоизлучающие диоды будет относительно неизменен.

Обзор схем для изготовления стабилизатора тока
Другой вариант схемы стабилизатора на транзисторе

Стабилитрон должен иметь как можно более низкое напряжение стабилизации, в противном случае будет теряться большая часть выходного уровня источника питания. Но низковольтный стабилитрон найти не так легко, поэтому хороший вариант – заменить его двумя (или более) обычными диодами в прямом включении.

Диоды задают напряжение на базе полупроводникового прибора, но надо учитывать, что примерно 0,6 вольта упадет на эмиттерном переходе транзистора. Поэтому диодов должно быть не меньше двух.

Обзор схем для изготовления стабилизатора тока

Еще один вариант схемы – использование в качестве источника опорного напряжения «программируемый стабилитрон» TL431. При включении, указанном на схеме, на эмиттере транзистора всегда будет 2,5 вольта, и ток в цепи коллектора будет равен Iколлектора=2,5/R2+Iбазы. Ток базы невелик, поэтому можно считать, что ток коллектора достаточно стабилен и задается резистором R2.

Недостатком этой схемы является зависимость тока от входного напряжения. Улучшить параметры можно получить, запитав схему стабильным напряжением, добавив стабилизатор, собранный, например, на КРЕН.

Лучшие характеристики имеет стабилизатор на полевом транзисторе.

Обзор схем для изготовления стабилизатора тока
Схема драйвера на мощном MOSFET

Преимущество такой схемы в том, что стабилизатор представляет собой двухполюсник и может быть легко подключен в любую существующую цепь. Ток задается резистором R1 и имеет сложную зависимость от сопротивления и характеристик полевого транзистора. Ток стабилизации придется подбирать экспериментально из-за большого разброса параметров полупроводниковых приборов – и это недостаток данной схемы.

В самом простом варианте резистор отсутствует совсем. Затвор и исток соединяются вместе.

Такой вариант – без резистора – является, пожалуй, оптимальной схемой драйвера светодиодных приборов системы освещения авто. В этой ситуации требует решения проблема стабильного напряжения (выбросы в бортсети намного уменьшают срок службы LED). Линейные стабилизаторы (LM7812) работают плохо. Для нормальной работы им нужно на входе не менее 14 вольт, а в бортовой сети такое напряжение бывает не всегда. Работа с пониженным же напряжением питания ведет к падению яркости свечения световых устройств. А в приведенной схеме эти недостатки минимизированы.

Стабилизаторы на микросхемах

Обзор схем для изготовления стабилизатора тока

Источник стабильного тока можно построить на операционном усилителе. Выходной каскад ОУ в большинстве случаев не рассчитан на подключение мощной нагрузки, поэтому к нему в качестве усилителя подключается мощный полевой или биполярный транзистор. Приведенная схема имеет особенность – нагрузка подключена к общему проводу. Во многих случаях это удобно.

Иной вариант схемы – когда нагрузка подключается к плюсу питания.

Обзор схем для изготовления стабилизатора тока
Другой вариант драйвера на ОУ

Для обеих вариантов характерен общий недостаток – ток в цепи нагрузки зависит от входного напряжения. В совокупности с другими минусами (необходимость организации цепей смещения ОУ или питание от двуполярного источника и т.п.) схемы получаются громоздкими и особого распространения не получили.

Регулируемый стабилизатор постоянного тока

Для регулировки тока можно постоянный резистор, задающий этот ток, заменить переменным. Например, в схеме с биполярным транзистором достаточно регулировать сопротивление в цепи эмиттера.

Недостаток такой регулировки – через потенциометр идет полный ток нагрузки. Место подвижного контакта будет со временем подгорать и переменный резистор выйдет из строя. Другое дело – схема на полевом транзисторе. В цепи стока ток практически отсутствует (реально он составляет десятки, максимум – сотни миллиампер). Поэтому на MOSFET можно построить регулируемый источник. Практическая реализация БП для LED приведена на рисунке. Схема дополнена защитой от сверхтока на биполярном транзисторе VT2.

Обзор схем для изготовления стабилизатора тока
Регулируемый источник тока на MOSFET IRF740

Можно построить регулятор, позволяющий добиться стабилизации как тока, так и напряжения, при этом обе величины можно регулировать. В этом случае устройство будет универсальным, позволяющим использовать его для питания различных наборов светоизлучающих диодов. Классическим вариантом служит стабилизатор на микросхеме TL494, представляющей собой контроллер ШИМ. Она имеет два канала для обратной связи, что позволяет организовать два канала стабилизации (для тока и для напряжения). На вывод 1 микросхемы поступает напряжение с выхода стабилизатора. Микросхема сравнивает его с опорным и дает команду на увеличение или уменьшение длительности открытого состояния ключей.

Обзор схем для изготовления стабилизатора тока
Схема импульсного стабилизатора на TL494

Для отслеживания тока последовательно с нагрузкой установлен шунт, напряжение с которого заводится на вывод 16, где оно также сравнивается с опорным уровнем. Накопительный дроссель намотан на двух склеенных желтых кольцах проводом толщиной 1 мм. Напряжение регулируется потенциометром R13, а ток – R5. Ключевые транзисторы надо установить на радиатор.

Обзор схем для изготовления стабилизатора тока
Конструкция дросселя

Сделать драйвер для светодиодного светильника несложно. Надо только выбрать схему в рамках своей квалификации, и LED прослужат намного дольше. Хотя среди рассмотренных вариантов сложных нет – если нужно сложное устройство с большим количеством регулировок, защит и т.п., проще купить готовую плату.

Фото аватара
Панков Алексей

Инженер-электрик. Специалист по проектированию и эксплуатации электротехнических изделий.

Оцените автора
( 6 оценок, среднее 4.83 из 5 )
Светилов
Добавить комментарий